Rapid photochemical surface patterning of proteins in thiol-ene based microfluidic devices.

نویسندگان

  • Josiane P Lafleur
  • Radoslaw Kwapiszewski
  • Thomas G Jensen
  • Jörg P Kutter
چکیده

The suitable optical properties of thiol-ene polymers combined with the ease of modifying their surface for the attachment of recognition molecules make them ideal candidates in many biochip applications. This paper reports the rapid one-step photochemical surface patterning of biomolecules in microfluidic thiol-ene chips. This work focuses on thiol-ene substrates featuring an excess of thiol groups at their surface. The thiol-ene stoichiometric composition can be varied to precisely control the number of surface thiol groups available for surface modification up to an average surface density of 136 ± 17 SH nm(-2). Biotin alkyne was patterned directly inside thiol-ene microchannels prior to conjugation with fluorescently labelled streptavidin. The surface bound conjugates were detected by evanescent wave-induced fluorescence (EWIF), demonstrating the success of the grafting procedure and its potential for biochip applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices.

In this article we introduce a novel polymer platform based on off-stoichiometry thiol-enes (OSTEs), aiming to bridge the gap between research prototyping and commercial production of microfluidic devices. The polymers are based on the versatile UV-curable thiol-ene chemistry but takes advantage of off-stoichiometry ratios to enable important features for a prototyping system, such as one-step ...

متن کامل

Rapid and simple preparation of thiol-ene emulsion-templated monoliths and their application as enzymatic microreactors.

A novel, rapid and simple method for the preparation of emulsion-templated monoliths in microfluidic channels based on thiol-ene chemistry is presented. The method allows monolith synthesis and anchoring inside thiol-ene microchannels in a single photoinitiated step. Characterization by scanning electron microscopy showed that the methanol-based emulsion templating process resulted in a network...

متن کامل

OSTE Microfluidic Technologies for Cell Encapsulation and Biomolecular Analysis

In novel drug delivery system, the encapsulation of therapeutic cells in microparticles has great promises for the treatment of a range of health conditions. Therefore, the encapsulation material and technology are of great importance to the validity and efficiency of the advanced medical therapy. Several unsolved challenges in regards to versatile microparticle synthesis materials and methods ...

متن کامل

High-resolution Micropatterning of Off-stochiometric Thiol-enes (oste) via a Novel Lithography Mechanism

We present an entirely novel, self-limiting photolithography mechanism in off-stoichiometry thiol-ene (OSTE) polymers enabling high-resolution and high-aspect ratio features. The OSTE polymers have previously been shown to be promising materials for fabrication of microfluidic devices with tailored surface modifications and mechanical properties. We here introduce direct lithography for micropa...

متن کامل

Low Temperature “click” Wafer Bonding of Off-stoichiometry Thiol-ene (oste) Polymers to Silicon

INTRODUCTION Common bonding techniques for lab-on-chip (LOC) microfluidic devices require surface bio-functionalization to be performed in-situ after the chip has been packaged due to the bio-incompatible features of the bonding technique, including high temperature requirements (e.g. thermal bonding of thermoplastics), use of organic solvents (e.g. PMMA bonding) or plasma activation (e.g. PDMS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 138 3  شماره 

صفحات  -

تاریخ انتشار 2013